Functionality

  • Protein enrichment from 100% organic sunflower seeds
  • Ideal for use in natural foods for 100% organic
  • Clean Labelling
  • GMO-free
  • Binding agent with emulsifying effect
  • Improves consistency and has a stabilizing effect
  • Water and fat binding
  • Optimal for steady viscosity
  • Vegetable protein
  • Vegan
  • Rich in protein and fiber
  • Low carb and low fat
  • B-vitamins and especially rich in folic acid
  • Rich in polyphenols
  • Gluten-free cereal substitute
  • Supports spicy foods
  • Dietary supplement
  • Usable in cold and warm emulsions

 

Because of its great fat and water binding Heliaflor® has excellent emulsifying capabilities. Application as binding agent, consistency enhancer and stabilizer is possible. Comparison showed that Heliaflor® 55 can achieve a better and more stable fat binding than Heliaflor® 45. On the other hand Heliaflor® 45 showed great water binding capabilities. Almond flour showed the best fat binding capabilities, followed by Heliaflor® 55, Heliaflor® 45 and finally soy milk powder.

 

Emulsifying properties in general

Due to its strong emulsifying capabilities sunflower protein Heliaflor® is very versatile in its application. The spectrum of products made from emulsions ranges from cosmetics like salves to food products like milk, ice cream, spreads or salad dressings (Schubert, 2005). Emulsions are heterogeneous compounds made out of two or only few dissolvable liquids, e.g. water and oil. Substances with emulsifying qualities are added in order to stop the heterogeneous compound from separating. These substances are called emulsifiers or stabilizers. Emulsifying agents can act as a link between two liquids that usually can’t be connected.

The following diagrams show water and fat binding of different emulsions. Used emulsifiers are Heliaflor®, almond flour and soy milk powder. Emulsions were made out of one part protein and four parts water.

Figure 2 shows water binding capacity of plant proteins and appropriate flow curve of Heliaflor® 45, Heliaflor® 55, soy milk powder and almond flour. Shear stress [Pa], which equates to viscosity of a substance, is plotted against shear rate [s-1].The higher viscosity the better is water binding of plant protein. In contrast to soy milk powder and almond flour Heliaflor® shows structurally viscous flow behaviour, this means suspension is obtained. Flow curves rise up with a lower shear stress. With increasing shear stress curve gradient decreases. Both types of Heliaflor® have the highest values for viscosity and therefore a great water binding capacity. Results for Heliaflor® 45 are higher in comparison to Heliaflor® 55. Flow curves of soy milk powder and almond flour are rather low and flat. This results in a low water binding capacity.

Beschreibung der Ergebnisse

 

Abbildung 2: Wasserbindung

Die Abbildung 2 gibt eine Übersicht der Fließkurven von Heliaflor® 45, Heliaflor® 55, Sojamilch-Pulver und Mandelmehl bei einem Mischungsverhältnis von 1:4. Die Fließkurven von Heliaflor® zeigen im Gegensatz zu Sojamilch-Pulver und Mandelmehl strukturviskoses Fließverhalten (d. h. es ist eine gebundene Masse/Suspension enstanden). Die Fließkurven steigen bei einer niedrigen Scherrate steil an und zeigen bei einer steigenden Scherbelastung eine abnehmende Steigung. Vergleicht man die Viskosität (Schubspannung), so zeigen beide Heliaflor®-Varianten deutlich höhere Werte. Die Werte der Schubspannung des Heliaflor® 45 sind im im Vergleich zu Heliaflor® 55 ungefähr um den Faktor 6 höher.  Die Fließkurven von Sojamilch-Pulver und Mandelmehl verlaufen ähnlich niedrig und flach. Das bedeutet, dass es bei den beiden Proteinen, bei diesem Protein-Wasser-Verhältnis, nur zu einer geringen Viskosität kommt, was einer schlechten Wasserbindung gleichkommt.

 

Abbildung 8: Fettbindung

Figure 8 shows fat binding capacity [%]. Heliaflor® and almond flour show excellent fat binding capacities. Over a longer period fat binding of Heliaflor®45 is better than fat binding of Heliaflor® 55. Fat binding capacity of sunflower protein is due to the high number of non-polar side chains (Zayas, 1997).    7).